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Abstract

Purpose: This paper describes a novel method to automatically segment the human brainstem into midbrain and pons,
called LABS: Landmark-based Automated Brainstem Segmentation. LABS processes high-resolution structural magnetic
resonance images (MRIs) according to a revised landmark-based approach integrated with a thresholding method, without
manual interaction.

Methods: This method was first tested on morphological T1-weighted MRIs of 30 healthy subjects. Its reliability was further
confirmed by including neurological patients (with Alzheimer’s Disease) from the ADNI repository, in whom the presence of
volumetric loss within the brainstem had been previously described. Segmentation accuracies were evaluated against
expert-drawn manual delineation. To evaluate the quality of LABS segmentation we used volumetric, spatial overlap and
distance-based metrics.

Results: The comparison between the quantitative measurements provided by LABS against manual segmentations
revealed excellent results in healthy controls when considering either the midbrain (DICE measures higher that 0.9; Volume
ratio around 1 and Hausdorff distance around 3) or the pons (DICE measures around 0.93; Volume ratio ranging 1.024–1.05
and Hausdorff distance around 2). Similar performances were detected for AD patients considering segmentation of the
pons (DICE measures higher that 0.93; Volume ratio ranging from 0.97–0.98 and Hausdorff distance ranging 1.07–1.33),
while LABS performed lower for the midbrain (DICE measures ranging 0.86–0.88; Volume ratio around 0.95 and Hausdorff
distance ranging 1.71–2.15).

Conclusions: Our study represents the first attempt to validate a new fully automated method for in vivo segmentation of
two anatomically complex brainstem subregions. We retain that our method might represent a useful tool for future
applications in clinical practice.
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Introduction

In neuroimaging, brain segmentation plays an important role in

several medical applications. This field of study has attracted much

interest from the clinical community since in vivo automatic

quantification of anatomical abnormalities in critical brain regions

represents crucial information that might significantly impact

clinical management and practice (i.e. identification of new

biomarkers).

Although manual segmentation is currently considered the gold

standard approach to determine the morphology of brain regions

[1], this method is traditionally time-consuming and dependent on

rater experience. Designing algorithms that automatically segment
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brain regions is challenging, especially for highly variable

structures such as the ones located at subcortical level. In the

last few years, a large amount of robust and fully automated

segmentation tools have been developed for extracting complex

anatomical brain regions. To overall summarize these methods

several theoretical categories have been proposed.

For instance, automated segmentation methods may be

classified in three broad classes:

(i) The first class of methods achieves brain tissue segmentation

by applying statistical classification methods to the signal

intensities. The initial works used information from only one

MRI contrast (i.e., T1 weighted images) [2–4] while

advanced techniques employed very complicated adaptive

segmentation algorithms [5] or multichannel tissue segmen-

tation methods combining data from different imaging

contrasts [6], which drastically improved the ability to

segment subcortical structures. However, analysis of the

signal intensity alone is not sufficient to distinguish between

different subcortical gray mater structures. For this reason, it

has been suggested [7,8] that incorporating a priori

constraints, such as corresponding anatomical landmarks,

can improve the identification of boundaries in regions

where anatomical boundaries are fuzzy and greater residual

anatomic variability remains.

(ii) The second class refers to methods that rely primarily on

strong shape, mathematical models, where the algorithms

are dedicated to discriminate between brain regions by using

morphological contents (geometry) of MRIs. For example,

FreeSurfer [9] employs affine transformations while com-

bining the voxel intensity values relative to a probability

distribution for tissue classes, with the information of the

voxel location in respect with the neighboring structures

obtained from a manually labeled atlas. Again, Pohl et al.

[10] used an Expectation Maximization (EM) type algo-

rithm with shape priors to perform segmentation. The EM

algorithm is a general method of finding the maximum

likelihood estimate of the parameters of an underlying

distribution from a given data set when the data is

incomplete or has missing values. This algorithm has been

employed by several 3D automatic tools for improving brain

segmentation [7,11].

(iii) Finally there are others tools that use mathematical models

for brain segmentation that include both the appearance

(voxel intensity) and shape (geometry) of each single brain

region [12,13]. For example, in FSL/FIRST [13], auto-

mated segmentations proceed via a Bayesian probabilistic

approach using shape and appearance models, built from a

library of manually segmented images, parameterized as

surface meshes and then modeled as point distributions.

Using the learned models, FIRST searches through linear

combinations of shape modes of variation (principal

components) to find the most probable shape instance given

the observed intensities from the input image. FIRST uses

an empirically determined fixed number of modes (itera-

tions) for each structure. Finally, the vertex information or

models are transferred back to the native space in which the

boundaries were corrected and volumes (labels) were

generated.

Again, an elegant division proposed by Khan et al. [14]

distinguishes these methods in:

(a) Knowledge-driven methods, which use implicit or explicit

anatomical knowledge to guide the segmentation, mainly

for individual structure such as caudate nucleus and

hippocampus/amygdala [15,16].

(b) Probabilistic-based methods, which treat segmentation as a

classification problem and estimate the labeling that

maximizes an a posteriori probability given specific constraints

(such as Freesufer [9]).

(c) Deformable template-based methods, which involve finding a

geometric transformation from a pre-labeled template scan

to the target scan and propagating the labels with the same

transformation to label the target brain.

Although all these methods contributed towards quickly and

accurately obtaining in vivo 3D volumetric quantification of almost

all clinically relevant subcortical brain regions, there is a specific

subcortical region of the human brain that still remains sparsely

studied: the brainstem. Among the above-mentioned techniques

only few methods directly provide an objective quantification of

the brainstem [6,9,13]. The human brainstem is a very complex

structure composed by two sub-regions of great clinical interest,

the pons and the midbrain, far from being adequately segmented.

The automatic 3D segmentation of these two regions is essential by

virtue of their neurophysiological peculiarities. The midbrain

holds several important nuclei, such as substantia nigra and red

nucleus, involved in several neurophysiological processes regulat-

ing emotion and motor behaviors. The pons connects the

cerebellum to the main portion of the brain through two thick

structures known as cerebellar peduncles. White matter inside the

pons is crucial to a number of important motor functions,

including: arousal, sleeping and sensory awareness. Moreover,

there is increasing evidence that some neurodegenerative diseases,

such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), are

characterized by early (and distinct) involvement of these two

regions [17–22]. At this time, the only validated MRI-based

measurement employed in clinical practice derives from conven-

tional MRI using manual morphometric quantification. In fact,

several authors [19,22,23], using different approaches, demon-

strated that the diameter or area assessed on the mid-sagittal plane

of these two brainstem structures, allow a reliable differential

diagnosis of PD with respect to parkinsonism of different etiology,

such as Progressive Supranuclear Palsy (PSP)(clinically similar to

PD patients, but with a more rapid disease progression). In all

these studies, the steps to identify and quantify the pons and

midbrain are based upon manual intervention, thus making it

difficult to assess reliability between the methods and the

application on large samples (due to time constraints). For this

reason, an accurate in vivo automatic measurement of these two

regions is an essential step for improving clinical management of

neurological patients, as well as, in longitudinal and prospective

studies, thereby eliminating the problems associated with manual

segmentation.

In this paper we present a novel method able to perform an

unbiased automatic segmentation of the pons and the midbrain

using high-resolution structural MRIs, in order to obtain accurate

measurements of these two anatomically complex subcortical

regions. This method is called: LABS (Landmark-based Automated

Brainstem Segmentation). LABS is based on a revised landmark-based

approach using general, widely-accepted knowledge of human

brain morphology, which integrates information about tissue class,

structure and position, without requiring manual intervention.

This information is integrated with a ‘‘thresholding-based

approach’’, that allows separation of the two classes through the

choice of a pixel intensity value (‘‘threshold’’) [24], so that all pixels

Automated Brainstem Segmentation
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with intensity greater than the threshold are grouped within a class

and all other pixels into another class. Our method has been tested

using a 3Tesla MRI scanner on healthy populations having a large

age-range and validated using quantitative comparisons. More-

over, to further validate our tool in the neurological realm, we also

tested automatic 3D segmentation on patients with AD, obtained

from another MRI scanner (Siemens 1.5T, ADNI database)

Methods

Participants
Thirty right-handed healthy right-handed subjects (mean age:

42.762.5 years; age range from 24 to 71 y; 15 males) participated

in this study. Careful screening was performed to ensure that

participants were free of psychiatric and/or neurological history,

psychoactive drug treatment, drug or alcohol abuse, and had no

MR contraindications. All participants gave written informed

consent to participate in the present study, approved by the Ethical

Committee of the University ‘Magna Graecia’ of Catanzaro

according to the declaration of Helsinki.

To further validate our study, we enrolled 40 patients with AD

(mean age: 71.866.8 years; 22 males) and 40 age-/sex-matched

healthy controls (mean age: 73.7610.1 years; 23 males) from the

Alzheimer’s disease Neuroimaging Initiative (ADNI) repository

(www.loni.ucla.edu/ADNI) (Table S1 and Table S2). The ADNI

project was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration

(FDA), together with private pharmaceutical companies and

non-profit organizations. The primary goal of ADNI has been to

test whether serial MRIs, positron emission tomography, several

biological markers, and clinical/neuropsychological assessments

can be suitably combined to measure the progression of mild

cognitive impairment and early AD.

MRI Acquisition
Brain MRI for healthy controls was performed on a 3 Tesla

scanner with an 8-channel head coil (Discovery MR-750, GE,

Milwaukee, WI, USA) at the Neuroimaging Research Unit,

Institute of Neurological Sciences, National Research Council,

Catanzaro, Italy. Structural MRI data were acquired using a 3D

T1-weighted spoiled gradient echo (SPGR) sequence with the

following parameters: TR: 3.7 ms, TE: 9.2 ms, FOV: 25.6 mm,

flip angle 12u, voxel-size 16161 mm3, producing 368 slices

covering the entire brain. Subjects were positioned to lie

comfortably in the scanner with a forehead-restraining strap and

various foam pads to ensure head fixation. All scans had equally

good quality with negligible motion artifacts.

AD patients and age-/sex-matched healthy controls followed

the ADNI MRI acquisition protocol [25]. We only used images

acquired with 1.5 T scanners and already pre-processed to avoid

artifacts due to magnetic field inhomogeneity and signal drifts

[25]. For each subject, we used the MRI considered as the ‘‘best’’

quality scan by the ADNI investigators. In the description of the

ADNI methods (http://www.loni.ucla.edu/ADNI/Data/ADNI_

Data.shtml), the ‘‘best’’ quality image is the one which was used for

the complete pre-processing steps. The identification numbers of

the images used in this study are reported in Table S1 and Table

S2.

Algorithm
In this section we describe the proposed automated segmenta-

tion approach to define the pons and midbrain parcellation. This

method consists of three stages summarized by the outline in the

Figure 1, whose details will be presented in the following sections.

The input data for our method consisted of high-resolution T1-

weighted structural MRI scans. This method was first validated on

population of 30 right-handed healthy subjects enrolled in our

institute. Next, we tested its robustness on additional cohorts of

AD and controls extracted from ADNI database.

The first stage was aimed to automatically define the mid-

sagittal plane. For this reason, morphological high-resolution T1-

weighted images were rigidly registered (using a 6-parameter affine

registration) to the template MNI image based on the mutual

information metric using the software SPM8 software (http://

www.fil.ion.ucl.ac.uk/spm) and resampling the registered T1 using

cubic spline interpolation. Subsequently, we individuated the mid-

sagittal plane using specific anatomical landmarks such as the

corpus callosum and the upper part of the brainstem. In the

second stage we segmented the brainstem, mammillary body and

the quadrigeminal plate using the mid-sagittal plane. The outline

of these latter subcortical structures is extremely important for

defining the planes useful for dividing brainstem into the pons and

midbrain, following previous radiological and anatomical criteria

[22,26]. Finally, in the last stage we used the planes of cut,

previously defined, to delineate two subvolumes of images in

which we may respectively segment and extract the entire volumes

of the pons and midbrain.

Each step of our method is based upon a combination of a

revised landmark-based approach together with a threshold-based

algorithm. The threshold value used for each step was obtained

using a revised Otsu et al. [24] approach, introducing some

correction factors to improve the quality of the segmentation.

Individuation of mid-sagittal plane
The first stage was characterized by the individuation of the

mid-sagittal plane within the 368 slices of our morphological T1-

weighted sequence. In general, the mid-sagittal plane can be

defined as either the plane best matching the cerebral interhemi-

spheric fissure [27,28] or the plane maximizing the bilateral

symmetry [29–31]. A large amount of work has been dedicated to

the automatic individuation of this plane using different approach-

es [32–36].

In our method we registered the volume of images to a template

MNI using a rigid transformation. Next, to reach automatic

identification of the ‘‘mid-sagittal’’ plane, several pre-processing

steps were needed. First, we individuated in the overall T1-

weighted sequence, a sub-volume of 40 images, called S1,

(arbitrarily) centered on the ‘‘middle slice’’ of slice number 184.

Then, we defined the gravity center of the headmask on the

middle slice. In particular, the gravity center was obtained by

thresholding the morphological T1-weighted images using Otsu’s

method [24] (Figure S1). In this way we obtained a binary mask

where the coordinates X and Y of the barycenter B were given by

Eq. 1, 2:

X~
Xn

i~1

pixi=
Xn

i~1

pi ð1Þ

Y~
Xn

i~1

piyi=
Xn

i~1

pi ð2Þ

where (xi,yi) and pi are the coordinates and the value of the i-th

pixel and n is the numbers of pixels of image.

Second, knowing the position of the gravity center on the

middle slice we may automatically segment the corpus callosum on
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each slice within S1. To do this we binarized the image and then

we individuated the corpus callosum as the biggest connected

component [37] that is positioned closer to the gravity center of

the headmask. The threshold value (t) used to determine the

connected component was different from that used to find the

center of gravity of the head. In fact, we used a higher threshold in

order to separate the corpus callosum, a structure with a very high

intensity and therefore very clear in a T1-weighted sequence, from

surrounding regions. The threshold value used for the segmenta-

tion of the corpus callosum was (Eq.3):

t~t1z0:3 ð3Þ

where t1 was the threshold obtained using Otsu’s binarization

[24]. To determine the connected components, we used a

neighborhood of eight pixels; and before the binarization, we

enhanced the contrast of the grayscale image by transforming the

values using contrast-limited adaptive histogram equalization

(CLAHE) with a 0.02 contrast enhancement limit of 64 tiles

[38].We were then able to automatically discriminate the corpus

callosum on each single slice. Examples of automatic segmentation

of the corpus callosum on different slices, included in the

subvolume S1, have been reported in Figure S2.

Considering the slice where we detected the smallest area of the

corpus callosum, we automatically individuated three lines as

shown in Figure 2. Line A is aligned with the left-bottom extreme

point (point 1) and the right-bottom extreme point (point 2) of the

corpus callosum. Lines B and C were perpendicular to the first

line, and they crossed the corpus callosum respectively at points 1

and 2. These lines are helpful to discriminate the R1 region on

each slice that will be used to segment the upper part of the

brainstem. The dimensions of the rectangle R1 are L6L*2/3

where L was the distance between points 1 and 2.

Each slice within S1 was binarized and the pixels that are out of

the rectangle R1 were set to zero. Next, we individuated the

biggest connected component. This component is considered as

the upper part of the brainstem (see Figure S3) and will be used to

Figure 1. Stages of algorithm.
doi:10.1371/journal.pone.0085618.g001

Figure 2. Definition of the R1 region used to segment the upper
part of brainstem.
doi:10.1371/journal.pone.0085618.g002
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calculate the number of pixels composing it on each slice

(quantification of area).

In accordance with morphological knowledge, we defined the

‘‘mid-sagittal plane’’ as the slice where the upper part of the

brainstem is minimal. In this slice we have the biggest distance

between the midbrain tectum and the quadrigeminal plate;

consequently, we may observe the maximal expansion of the

Sylvius aqueduct. In fact, the expansion of Sylvius aqueduct (see

Figure S4) is considered an additional anatomical marker

characterizing the mid-sagittal plane.

Calculating the area in each single slice included in the

subvolume R1 (see Figure S5), the slice nu 20 is where we detected

the minimal area of the upper part of the brainstem, thus it was

definitively targeted as the mid-sagittal slice for this subject. Due to

the extreme anatomical variability of the human brain, this latter

step was repeated for each single subject. This approach has been

further validated comparing the mid-sagittal slice, as automatically

defined by LABS for each single subject, with that provided by two

blind expert neuroradiologists (P.P, F.F). An excellent agreement

was found. In fact, in 94% of the cases the algorithm individuated

the same slice as those chosen by the neuroradiologists.

Furthermore, in the remaining 6% of the cases, the difference in

the spatial position between the automated and manual slice was

minimal (about 1–2 slices).

Individuation of boundaries of pons and midbrain on
mid-sagittal slice

The manual approach proposed by Oba et al. [22], and Luft

et al. [26], to identify the boundaries of the pons and the midbrain

requires localizing the entire brainstem on the mid-sagittal slice.

We used the same method shown in the above section. In

particular, repeating some steps previously described, we identified

the position of the corpus callosum on the mid-sagittal slice where

we re-applied the R1 region (Figure 3A). Within this subvolume we

individuated the brainstem as the largest connected component. In

this case we did not define a lower limit for the rectangle R1 (as

previously done, see Figure 2), thus allowing us to entirely segment

the brainstem (Figure 3B).

The threshold value used to evaluate the connected component

was (Eq.4):

t~t1z0:35 ð4Þ

After the segmentation of the brainstem (Figure 3B), we were

able to identify another two critical anatomical landmarks that will

become important for the following steps: mammillary body and

quadrigeminal plate (Figure 4A). To identify the mammillary body

we extracted the contour of the brainstem and studying the

variation of thickness of the upper left profile we identified the

enlargement of the rostral midbrain and so the mammillary body

(Figure S6). To identify the quadrigeminal plate we employed

again the R1 region, deleting the pixels belonging to the brainstem

and identifying the plate as the connected component that had the

center of gravity closer to the midbrain tectum (Figure S7).

At this point we can define the boundaries of midbrain and pons

according to the method proposed by Oba et al. [22], and Luft et

al., [26]. In particular the cranial border of the midbrain is defined

as the axial plane through the mammillary body and the superior

edge of the quadrigeminal plate. The caudal border is defined as

the axial plane aligned for the superior pontine notch and the

inferior edge of the quadrigeminal plate. The inferior boundary of

pons is composed of a plane parallel to the latter plane and aligned

with the inferior pontine notch (Figure 4B)

To automatically define lines A and B, we employed three

points (Figure 5). The positions of the first and the second points

are determined by extrapolating the contour of the left side of the

region and defining the variations of its profile. Points 1 and 2

represent respectively the beginning and the end of the anterior

‘‘hump’’ of the pons. To find the third point we isolated the

quadrigeminal plate and defined its inferior point. Finally, we

separated the pons from the cerebellum using a coronal plane

through two points belonging to the dorsum of the brainstem

(Figure S8).

3D segmentation of the pons and midbrain
In the final stage we extracted the entire volume of the pons and

midbrain. First, we removed all pixels outside the brainstem setting

the pixels to zero outside the boundaries defined in the previous

sections and we resampled volumes to isotropic dimensions of

0.5 mm to allow a better spatial resolution of small brain

structures. Then, using a thresholding approach we identified

the area of the midbrain and pons on each slice, taking the largest

connected component in the binarized image. Before the

binarization we processed the image using contrast-limited

adaptive histogram equalization. Furthermore, we re-introduced

a corrector factor to binarize the image: the threshold value used

was (Eq.5):

t~t1z0:1 ð5Þ

In the Figure S9 and S10 we highlighted in red the automatic

segmentation of the midbrain and pons as performed by LABS. As

shown in the last slices of Figure S10, the loss of anatomical

definition in the upper part of the pons is dependent upon the

complex separation between the pons and the middle cerebellar

peduncles. In the neuroradiological and neuroimaging community

there is no consensus on which anatomical landmark might be

useful to improve this separation. For this reason, we decided to

introduce another arbitrary landmark in order to better delineate

the middle cerebellar peduncles. To do that, the lateral margins of

the superior cerebellar peduncle were used for demarcating the

boundaries between the middle cerebellar peduncles and pons. In

particular, a volumetric slab of 40 mm (0.5-mm section thickness)

tangent to the floor of the fourth ventricle was placed on a mid-

sagittal plane to cover the entire extension of superior cerebellar

peduncles (Figure S11).

The resulting oblique coronal images were used for subsequent

individuation of two bilateral points employed as anatomical

landmarks of the middle cerebellar peduncles (Figure S12). We

used these two points to define two vertical lines, which we then

Figure 3. Segmentation of brainstem on mid-sagittal slice: a)
identification of subregion of interest; b) segmentation of the
entire brainstem using a threshold-based approach.
doi:10.1371/journal.pone.0085618.g003
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used to separate the pons from the middle cerebellar peduncle

(Figure S13).

Finally, it is possible to obtain a 3D reconstruction of the

automatic segmentation of the pons and midbrain using the

matlab function, called ‘‘isosurface’’ (Figure 6). Overall, our

algorithm run-time is between 10 min and 15 min on a

2.30 GHz Asus with an Intel Core i7-3610QM processor.

MRI-based Manual Volume
Automated brainstem subregion accuracies were compared with

manual segmentations as performed by two independent raters

(G.Z)(F.F.), with more than 10 years of experience in neuroradi-

ology, blind to the aim of this study. Manual segmentation was

performed using MRIcro software (www.mricro.com), drawing, on

the mid-sagittal slice, three lines that defined the cranial and the

caudal borders of the midbrain and the inferior boundary of the

pons in accordance with the methods described by Oba et al. [22]

and Luft et al. [26]. All pixels outside these boundaries were then

automatically set to zero and the data sets were reoriented into the

axial plane. Raters were thus able to segment the pons and

midbrain on the same slices used by LABS. The binary masks

representing the results of manual segmentation were generated

for each subject and considered as the gold standard to evaluate

Figure 4. Identification of additional anatomical landmarks: a) mammillary body (red) and quadrigeminal plate (green); b)
Boundaries of pons and midbrain on mid-sagittal slice according to the method proposed by Oba et al. [22] and Luft et al. [26].
doi:10.1371/journal.pone.0085618.g004

Figure 5. The Oba’s method [22] to separate midbrain and
pons on mid-sagittal slice. A first line passing through the superior
pontine notch (point 1) and the inferior edge of the quadrigeminal
plate (point 3) is drawn (line A) to separate midbrain and pons. A
second line parallel to the first line passing through the inferior pontine
notch (point 2) is drawn to define the inferior limit of the pons (line B).
doi:10.1371/journal.pone.0085618.g005

Figure 6. 3D segmentation of pons and midbrain by LABS.
doi:10.1371/journal.pone.0085618.g006
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the performance of the LABS. The LABS output was similarly

converted into binary images. Finally, the accuracy of LABS’s

performance was compared to manual tracing using the following

criteria [39]: (i) percent volume overlap or Dice’s coefficient as

defined in Eq. 6 [40], (ii) percent volume difference as defined in

Eq. 7 and (iii) the Hausdorff distance [41].

(i) The DICE coefficient is one of a number of measurements

made to determine the extent of spatial overlap between two

binary images. It is commonly used in the neuroimaging

community to report on the performance of segmentation

methods, and its values range between 0 (no overlap) and 1

(perfect agreement). Given two different labels of a structure, L1

and L2, and a function V(L), which takes a label and returns its

volume, the percent volume overlap is given by:

O L1,L2ð Þ~ V L1\L2ð Þ
V L1ð ÞzV L2ð Þ

2

� �|100 ð6Þ

(ii) For each individual segmentation result we find the volume

(V) as the number of labeled voxels multiplied by the voxel

dimensions. We then calculate the percentage absolute volumetric

difference (AVD) as the ratio of the absolute difference between

the original volume and the segmented volume, to the original

volume (Eq.7). The absolute value is used to account for some

segmentation results having a lower volume than the gold

standard, and others having a higher volume.

AVD~
Va{Vg

�� ��
Vg

|100 ð7Þ

(iii) The modified Haussdorf distance between two point sets

A~ a1, . . . ,aNAf gnd B~ b1, . . . ,bNBf gf size NA and NB is defined

as (Eq. (8))

hMHD A,Bð Þ~ 1

NA

X
a[A

dB að Þ ð8Þ

where dB að Þ represents the minimum distance value at point a to

the point set B.

Statistical Analysis
Statistical analysis was performed with Statistical Package for

Social Sciences software-SPSS (version 12.0, Chicago IL, USA).

Assumptions for normality were tested for all continuous variables.

Normality was tested using the Kolmogorov–Smirnov test. All

variables were normally distributed.

To analyse effects of age, a linear regression model (r’s Pearson)

was applied with the volumes of the midbrain and pons as

extracted by LABS and by the two independent raters. Unpaired t-

test was used to assess the presence of anatomical differences

between the brainstem regions of healthy controls and AD

patients. Age and gender were included in this model as nuisance

variables. All statistical analyses had a two-tailed a level of ,0.05

for defining significance.

Results

LABS validation on healthy controls
LABS showed that the average volumes of midbrain and pons

in the human brain were of: 4031, 6 mm3 and 10440,4 mm3

(respectively, see Table 1 and Table 2) in agreement with previous

post-mortem evidence [42]. The linear regression model revealed

significant associations between age and the volumes of brainstem

subregions either as measured by LABS (r = 20.44, p-value = 0.01;

r = 20.36, p-value = 0.02; respectively for midbrain and pons) or

by manual tracers (first rater: r = 20.36, p-value = 0.03; r = 20.31,

p-value = 0.04; second rater: r = 20.34, p-value = 0.04; r = 20.33,

p-value = 0.03; respectively for midbrain and pons).

To evaluate the accuracy of the LABS’s parcellation compared

to the gold standard (represented by manual segmentation) we

used several MRI metrics (Table 1 and Table 2; Figure 7). A)

DICE coefficient; the mean and standard deviation was excellent:

(first/second rater) 0.9160.03/0.960.03 for mibrain; 0.9360.03/

0.9560.03 for the pons. Similarly, the inter-rater variability for

DICE coefficients was consistent among raters (mean 6 SD:

0.9560.02; 0.9760.03; respectively for the midbrain and pons). B)

Volume Ratio; calculation of the volume ratio between the entire

midbrain and pons as provided by LABS with respect to the gold

standard confirmed the elevated accuracy of our method showing

a slight tendency of LABS to overestimate morphology of the pons

(mean 6 SD volume ratio for the first/second rater: 0.99960.11/

1.000960.133 for midbrain; 1.0560.07/1.02460.05 for the

pons). C) Hausdorff distance; examining the surface distances led

to more meaningful comparisons between structures as only

accuracy of the segmentation boundaries is taken into account.

Our tabulated results showed an increased LABS surface distances

over the midbrain (mean 6 SD for the first/second rater:

3.00560.75/2.89560.7), while the LABS segmentation boundar-

ies followed the manual gold standard boundaries better over the

pons (mean 6 SD for the first/second rater: 1.96661.86/

2.0362.01), although a large standard deviation among measure-

ments was detected.

LABS validation on neurological population
To further stress the robustness of our MRI-based automated

segmentation method, we analysed MRIs of a neurological

population. In particular, from the initial cohort we compared

the LABS’s performance against manual segmentation on

randomly selected 10 AD patients extracted from ADNI database

(Table S1). Figure S14 showed a qualitative evaluation of the

overall 3D reconstruction of the pons and midbrain in the selected

AD patients as performed by LABS. Table 3–4 and Figure 8

described quantitative evaluations of LABS’s performance by

means of several MRI metrics. A) We obtained DICE values

ranging from 0.86 (60.05) to 0.88 (60.05) for the midbrain, while

LABS performed better considering the pons: values ranging from

0.93 (60.02) to 0.94 (60.02). Similarly, the inter-rater variability

for DICE coefficients was consistent among raters (mean 6 SD:

0.9160.08; 0.9560.06; respectively for the midbrain and pons). B)

Calculation of the volume ratio between the entire midbrain and

pons as provided by LABS with respect to the gold standard

confirmed the elevated accuracy of our method also considering

neurological patients, with values around 0.95 for the midbrain

and values around 0.98 for the pons (mean 6 SD volume ratio for

the first/second rater: 0.9560.09/0.9560.11 for midbrain;

0.9760.05/0.9860.08 for the pons). C) Hausdorff distance;

similar to that found in healthy controls, tabulated results showing

an increased LABS surface distances over the midbrain (mean 6

SD for the first/second rater: 1.7160.68/2.1560.83), while the

LABS segmentation boundaries followed the manual gold

standard boundaries better over the pons (mean 6 SD for the

first/second rater: 1.0760.46/1.3360.59).

Since previous post-mortem and neuroimaging studies demon-

strated that patients with AD might be characterized by early
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abnormalities of these two brainstem subregions [20,21], we

further evaluated the presence of morphological atrophy,

comparing the brainstem volumes, as assessed by LABS, on a

larger sample size of AD patients and healthy controls (nu 40 for

each group). Unpaired t-test revealed significant findings when

comparing the pons and midbrain volumes between groups. The

pons volume in AD patients resulted to be strongly reduced

(,10%) with respect to controls (T-value = 4.48, p-level = 0.00002;

mean 6 SD: 10693.026917.2 mm3, 9587.26661260.4 mm3;

respectively for controls and AD), whereas the statistical difference

detected in the midbrain was less prominent (8.2%)(T-value = 2.89,

p-level = 0.004; mean 6 SD: 4864.216492.3 mm3,

4461.66729.8 mm3; respectively for controls and AD)(Table S1

and Table S2). To further confirm this later evidence we

performed a voxel-based analysis on the same dataset using a

well-known unbiased advanced neuroimaging tool: voxel-based

morphometry (VBM). The objective quantification of volumetric

loss in the brainstem subregions, as performed by LABS, was also

confirmed by this different MRI approach (see Figure S15).

Discussion

Segmenting sub-cortical structures from 3D brain images has

attracted much attention in recent years given the numerous

clinical and neuroscientific applications. Until now, a large

amount of advanced post-processing MRI tools have been

developed allowing very reliable and consistent objective quanti-

fication of almost all subcortical regions of the human brain.

However, two clinically relevant regions, such as the pons and

midbrain, have received very little attention. As recently stated by

Lambert et al., [6], this is in part due to the difficulties in resolving

in vivo the internal architecture of the brainstem in a reliable and

Table 1. LABS performance on healthy controls: first rater.

First Rater MIDBRAIN PONS

Healthy
Controls

Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

HC1 5256 4981 0.935 2.23 0.948 10178 10248 0.956 0.9054 1,007

HC2 3608 3380 0.943 2.96 0.937 10144 10341 0.940 1.525 1,019

HC3 4377 3899 0.927 2.99 0.891 10160 10701 0.923 1.5776 1,053

HC4 4182 3998 0.939 2.64 0.956 9238 9532 0.943 1.323 1,032

HC5 3314 3153 0.927 2.76 0.951 8875 9284 0.940 1.9243 1,046

HC6 5172 4922 0.927 2.53 0.952 10795 11351 0.931 1.7847 1,052

HC7 3864 3636 0.942 2.57 0.941 8934 9935 0.934 1.4925 1,112

HC8 3633 3678 0.921 3.34 1.012 9435 10571 0.942 1.206 1,120

HC9 2834 3678 0.868 4.16 1.298 9829 10630 0.934 1.137 1,081

HC10 1997 2890 0.79 3.58 1.447 8348 8610 0.963 1.5 1,031

HC11 3950 3876 0.923 3.65 0.981 11221 10899 0.959 0.831 0,971

HC12 5393 4957 0.879 3.68 0.919 10624 11229 0.942 1.6461 1,057

HC13 6124 5269 0.884 3.1 0.860 10411 11048 0.947 1.3645 1,061

HC14 4899 4632 0.931 2.3 0.945 8629 11241 0.77 9.1 1,303

HC15 3354 3430 0.903 0.77 1.023 11416 11239 0.968 1.01 0,984

HC16 3921 3546 0.921 2.75 0.904 11904 11740 0.956 0.86 0,986

HC17 2842 2721 0.896 3.41 0.957 7334 7416 0.941 1.82 1,011

HC18 4415 4712 0.906 3.75 1.067 8822 9411 0.941 2.1 1,067

HC19 3164 3028 0.955 2.98 0.957 11487 11571 0.954 1.264 1,007

HC20 3923 3722 0.935 2.56 0.949 10382 10375 0.953 1.76 0,999

HC21 4720 4849 0.917 3.17 1.027 9943 10185 0.938 1.4906 1,024

HC22 5510 5495 0.936 2.18 0.997 9921 10218 0.945 2.05 1,030

HC23 4379 4642 0.924 3.79 1.060 9239 9313 0.932 1.479 1,008

HC24 3684 3441 0.943 2.206 0.934 10002 9918 0.942 8.2 0,992

HC25 3679 3897 0.911 3.58 1.059 8549 10678 0.855 2.13 1,249

HC26 3900 3897 0.939 4.82 0.999 11528 11684 0.940 2.354 1,014

HC27 4245 4432 0.906 3.14 1.044 10665 11088 0.935 1.266 1,040

HC28 4305 4485 0.875 3.21 1.042 8818 9172 0.954 1.09 1,040

HC29 4709 4617 0.922 3.12 0.980 11251 11716 0.945 1.09 1,041

HC30 3365 3085 0.885 2.2 0.917 11283 11868 0.955 1.699 1,052

Mean 4090.6 4031.6 0.91 3.004 0.999 9978.83 10440.4 0.93 1.966 1.05

St.dev 893.41 753.04 0.03 0.757 0.116 1133.31 1040.2 0.03 1.8624 0.07

doi:10.1371/journal.pone.0085618.t001
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repeatable fashion. We present here a novel MRI method, called

LABS, to automatically segment these two complex brain regions.

Overall, LABS may be considered a part of the knowledge-

driven methods [14–16] that generally use implicit or explicit

anatomical knowledge to guide the segmentation, performing

better when applied on single brain structures. Generally, this class

of automatic 3D segmentation methods presents difficulties if

pathology, scan sequence or manual delineation protocol differs

from those that the method is designed for [14]. Our data did not

support this hypothesis. Indeed, the robustness and accuracy of

our method was tested by means of quantitative evaluations both

on a large group of healthy subjects and on neurological patients

characterized by evident anatomical abnormalities in the brain-

stem [20,21]. Moreover, further evaluation of our method has also

been reached including MRIs acquired with a different scanner

and protocol (ADNI database) [25]. On the entire set of healthy

controls, quantitative comparison of the LABS’s segmentations

against the corresponding manual measurements showed excellent

performance considering all reliability metrics. In the neurological

realm, our software showed high performance in the segmentation

of the pons, while more variability was detected in the

quantification of the midbrain volume. However, when we

directly compared the volumetric measurements of the brainstem

subregions, as obtained from LABS, between controls and AD

patients we found significant atrophies of the pons and midbrain.

Overall, it is important to highlight that among all MRI metrics,

LABS’s performance had slightly lower accuracy when distance-

based measurements were considered. In fact, the Hausdorff

distance value, a measure strongly influenced by the shape and

surface of the brain region, was higher in the midbrain with

respect to pons, thus confirming the intrinsic anatomical

complexity of this subcortical region.

Table 2. LABS performance on healthy controls: second rater.

Second Rater MIDBRAIN PONS

Healthy
Controls

Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

HC1 5693 4981 0.907 2.72 0.875 10610 10248 0.941 1.121 0.965

HC2 3733 3380 0.927 3.4 0.905 10541 10341 0.942 1.4 0.981

HC3 4487 3899 0.888 1.02 0.868 10337 10701 0.955 1.226 1.035

HC4 4124 3998 0.919 2.91 0.969 9698 9532 0.958 0.99 0.982

HC5 3280 3153 0.919 2.43 0.961 8907 9284 0.952 1.306 1.042

HC6 5234 4922 0.927 2.21 0.940 10863 11351 0.946 1.4271 1.045

HC7 3710 3636 0.94 2.9 0.980 10043 9935 0.97 0.72 0.989

HC8 3572 3678 0.919 2.87 1.03 9948 10571 0.956 0.86 1.062

HC9 2598 3678 0.818 3.58 1.41 10441 10630 0.952 1.335 1.018

HC10 1978 2890 0.78 3.64 1.461 8541 8610 0.964 0.79 1.008

HC11 3960 3876 0.916 3.607 0.978 11056 10899 0.963 1.24 0.985

HC12 5165 4957 0.89 3.47 0.959 10784 11229 0.961 0.84 1.041

HC13 5940 5269 0.89 3.59 0.887 10705 11048 0.961 0.8481 1.032

HC14 5000 4632 0.927 3.42 0.926 10673 11241 0.8 8.45 1.053

HC15 3427 3430 0.931 1.11 1.0 10919 11239 0.957 1.69 1.029

HC16 3990 3546 0.917 3.1 0.888 11829 11740 0.961 0.75 0.992

HC17 2931 2721 0.887 2.56 0.928 6936 7416 0.948 2.23 1.069

HC18 4564 4712 0.91 3.2 1.032 8752 9411 0.945 1.91 1.075

HC19 3192 3028 0.945 2.4 0.948 11551 11571 0.951 1.11 1.0017

HC20 4012 3722 0.925 2.1 0.927 10234 10375 0.967 5.86 1.013

HC21 4810 4849 0.909 2.89 1.008 10035 10185 0.964 6.74 1.015

HC22 5224 5495 0.88 2.78 1.051 10177 10218 0.96 1.62 1.004

HC23 4472 4642 0.912 3.67 1.038 9252 9313 0.945 0.77 1.006

HC24 3803 3441 0.931 2.21 0.904 9874 9918 0.964 7.65 1.0044

HC25 3664 3897 0.904 3.16 1.063 8469 10678 0.874 1.443 1.26

HC26 3930 3897 0.92 4.21 0.991 11852 11684 0.954 1.44 0.985

HC27 4004 4432 0.9 3.14 1.106 10874 11088 0.959 1.57 1.019

HC28 4419 4485 0.91 3.128 1.014 9177 9172 0.974 1.31 0.999

HC29 4461 4617 0.88 2.72 1.034 11538 11716 0.962 1.03 1.015

HC30 3321 3085 0.91 2.68 0.928 11959 11868 0.975 1.32 0.992

Mean 4089.93 4031.6 0.9 2,895 1.0009 10219.1 10440.4 0.95 2.033 1.024

St.dev 895.53 753.03 0.033 0,70 0.133 1144.66 1040.2 0.033 2.112 0.052

doi:10.1371/journal.pone.0085618.t002
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To the best of our knowledge, LABS is the first advanced

neuroimaging technique able to automatically segment the

pons and midbrain of the human brain. State-of-the-art methods

for human brain MRI segmentation using conventional (manual

morphometry) [19,22,23,26] and advanced automatic methods

[3–5,7–16] are not applicable to clearly separate the midbrain

and pons. LABS represents the first approach that clearly

distinguishes these two brainstem subregions without requiring

manual intervention. In fact, the segmentation and labeling of the

pons and midbrain are performed using a revised landmark-based

approach that integrates the well-known thresholding-based

approach, with the individuation of specific anatomical

markers (i.e., corpus callosum, mamillary body and quadrigeminal

plate) useful to better identify and separate the brainstem

subregions. Generally, automated segmentation methods, using

landmark-based approach, have a more widespread applicability,

mainly in neurological context [8]. However, in contrast to atlas or

template-based methods (where atlas definition is highly depen-

dent upon the population that they were obtained from), LABS

relies heavily on anatomical landmarks present in all neurological

and psychiatric populations.

Despite the excellent performance provided by LABS, our

method has some limitations that deserve to be discussed. First, the

robustness of our method relies heavily on the intensity thresh-

olding of MRIs. Generally, intensity-based classification of MRIs

has proven problematic. Intra-scan intensity inhomogeneities due

to radio-frequency coils or acquisition sequences are a common

source of difficulty that ultimately may disturb intensity-based

segmentation methods. Although we also demonstrated the

robustness of our method on a different scanner and protocol

(ADNI database), a future target should be the inclusion of

additional algorithms able to adapt intra-scan and inter-scan

Figure 7. Box and whisker plots of volume quantification, DICE coefficient, Hausdorff Distance and Volume Ratio for each
brainstem subregion in healthy controls group who underwent morphological examination using a 3T scanner (Discovery MR-750,
GE). Values outside ranges are plotted individually (red cross).
doi:10.1371/journal.pone.0085618.g007

Table 3. LABS performance on patients with Alzheimer’s Disease: first rater.

First Rater MIDBRAIN PONS

AD_ID
Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

012_S_0689 5655 5688 0,839 2,685 1,006 10127 10171 0,949 0,691 1,004

033_S_0733 4750 3938 0,782 2,442 0,829 10733 10618 0,95 0,530 0,989

136_S_0300 5393 5420 0,9 1,2 1,005 9343 8838 0,929 2,160 0,945

027_S_1081 3072 3044 0,82 1,72 0,991 8855 8168 0,914 1,060 0,922

032_S_1101 4402 4509 0,92 1,168 1,024 7967 8220 0,88 1,221 1,031

033_S_0724 3840 3300 0,860 2,411 0,859 7079 6890 0,938 0,785 0,973

131_S_0457 3371 3306 0,82 0,801 0,981 8862 8785 0,96 0,822 0,991

127_S_0844 3689 3839 0,873 1,628 1,041 6902 6013 0,921 1,303 0,871

133_S_1170 3880 3092 0,822 2,1 0,797 9716 9608 0,924 1,177 0,988

136_S_0426 4577 4305 0,921 0,91 0,941 11065 10745 0,96 0,971 0,971

Mean 4262,9 4044,1 0,86 1,71 0,95 9064,9 8805,6 0,93 1,07 0,97

St.dev 845,83 939,16 0,05 0,68 0,09 1426,92 1555,4 0,02 0,46 0,05

doi:10.1371/journal.pone.0085618.t003
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intensity inhomogeneities, by using a priori knowledge of tissue

proprieties and voxel-intensity [5]. Another limitation was the

chosen anatomical boundaries for the separation of the pons and

midbrain from surrounding structures. In particular, as regards the

separation of the middle cerebellar peduncles from the pons, due

to the lack of shared anatomical criteria, we only referred to one

previous morphometric criterium [19] to extract useful landmarks.

However, to improve the separation between the pons and middle

cerebellar peduncles, we retain that an useful future improvement

will derive from the implementation of a multimodal approach,

integrating diffusion tensor images (DTI) information in the

segmentation steps of our algorithm. With DTI, it would be

possible to deeply delineate the boundary between the brainstem

and the cerebellar peduncles using cerebellar tracts to place new

reliable anatomical landmarks, Final, the computation of the

midsagittal plane was restricted to planes parallel to the orientation

of the volume after registration, without sub-voxel accuracy – as

opposed to other midsagittal plane detection algorithms [43].

Although it has been proposed that this does not seem to be of

critical importance in 3D brain images [12], we retain that this

lack of precision had a negligible impact on our method since

segmentation steps specifically relied on well-defined anatomical

landmarks.

In conclusion, after additional developments (i.e., automatic

adaptive correction of intensity inhomogeneities for segmenting

MRIs), we retain that our method might represent a useful tool for

future applications in clinical practice.

Table 4. LABS performance on patients with Alzheimer’s Disease: second rater.

Second Rater MIDBRAIN PONS

AD_ID
Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

Manual
Volume

LABS
Volume DICE

Hausdorff
distance

Volume
Ratio

012_S_0689 5420 5688 0,839 4,1193 1,0494 10826 10171 0,952 1,337 0,939

033_S_0733 4609 3938 0,793 2,67 0,854 10567 10618 0,958 1,1847 1,004

136_S_0300 4800 5420 0,934 0,9821 1,129 8394 8838 0,959 2,4965 1,052

027_S_1081 3342 3044 0,897 1,98 0,91 9371 8168 0,904 1,578 0,871

032_S_1101 4585 4509 0,93 1,628 0,983 8900 8220 0,950 1,264 0,923

033_S_0724 4018 3300 0,866 1,9878 0,821 7544 6890 0,948 0,7166 0,913

131_S_0457 3678 3306 0,897 1,6393 0,898 8484 8785 0,960 0,7282 1,035

127_S_0844 3541 3839 0,93 2,5216 1,084 6076 6013 0,961 1,2825 0,989

133_S_1170 3800 3092 0,833 2,12 0,813 8398 9608 0,922 1,088 1,144

136_S_0426 4623 4305 0,919 1,8703 0,931 10904 10745 0,95 1,618 0,985

Mean 4241,6 4044,1 0,884 2,152 0,948 8946,4 8805,6 0,946 1,329 0,986

St.dev 663,45 939,16 0,049 0,83 0,11 1534,76 1555,39 0,018 0,509 0,079

doi:10.1371/journal.pone.0085618.t004

Figure 8. Box and whisker plots of volume quantification, DICE coefficient, Hausdorff Distance and Volume Ratio for each
brainstem subregion in a selected population of AD patients (n610) extracted from ADNI database (Siemens 1.5T, ADNI database).
Values outside ranges are plotted individually (red cross).
doi:10.1371/journal.pone.0085618.g008
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Supporting Information

Figure S1 Gravity center of the headmask obtained
using Otzu’s binarization.
(DOCX)

Figure S2 Automatic segmentation of the corpus callo-
sum on different slices included in the subvolume S1

within the same subject.
(DOCX)

Figure S3 Automatic segmentation of the upper part of
the brainstem (included in the R1 region) in different
slices within the same subject.
(DOCX)

Figure S4 The mid-sagittal slice can be detected as the
slice where is maximal the expansion of Sylvius
aqueduct in accordance with morphological knowledge.
(DOCX)

Figure S5 Area of the upper part of the brainstem in
each single slice within the subvolume S1, as calculated
in one single subject. The point of minimum corresponds to

the position of mid-sagittal slice.

(DOCX)

Figure S6 Contours of brainstem. The red cross represents

the point used to separate the rostral midbrain from the mamillary

body.

(DOCX)

Figure S7 Segmentation of quadrigeminal plate using
the R1 region (A), deleting the pixels belonging to the
brainstem (B) and identifying the plate as the connected
component that had the center of gravity closer to the
midbrain tectum (C).
(DOCX)

Figure S8 Separation of cerebellum from posterior
brainstem (right side) using a coronal plane through
two points belonging to the dorsum of the brainstem
(left side).
(DOCX)

Figure S9 Automatic 2D segmentation of midbrain.
(DOCX)

Figure S10 Automatic 2D segmentation of pons.
(DOCX)

Figure S11 Arbitrary anatomical landmark useful for
separating cerebellar peduncles from pons. Figure

displayed a volumetric slab of 40 mm (0.5-mm section thickness)

tangent to the floor of the fourth ventricle (left side), placed on a

mid-sagittal plane to cover the entire extension of the superior

cerebellar peduncles (right side).

(DOCX)

Figure S12 Individuation of two bilateral points em-
ployed as anatomical landmarks of the middle cerebel-
lar peduncles.
(DOCX)

Figure S13 Separation of middle cerebellar peduncle
from pons using two vertical lines.
(DOCX)

Figure S14 3D segmentation of pons and midbrain as
performed by LABS for each AD patient.

(DOCX)

Figure S15 VBM analysis revealed the presence of
significant volumetric WM loss in the midbrain and
pons of AD patients compared to healthy controls. In

order to further validate measurement of brainstem as performed

by LABS, we employed voxel-based morphometry (VBM) in order

to reveal subtle volumetric loss in AD patients. Data were

processed using the SPM8 software where we applied VBM

implemented in the VBM8 toolbox, incorporating the DARTEL

toolbox that was used to obtain a high-dimensional normalization

protocol (http://dbm.neuro.uni-jena.de/vbm.html). Images were

bias-corrected, tissue classified, and registered using linear

(12-parameter affine) and non-linear transformations, within a

unified model. Subsequently, the warped white matter (WM)

segment was affine transformed into MNI space and were scaled

by the Jacobian determinants of the deformations (modulation).

Finally, the modulated volumes were smoothed with a Gaussian

kernel of 8 mm. The WM volume maps were statistically analysed

using the general linear model based on Gaussian random field

theory. We investigated the presence of volumetric differences

between AD patients (nu40) and healthy controls (nu40) using

unpaired t-test. Age and total intracranial volume (ICV) were

included in the model as covariates of no-interest. We selected

midbrain and pons as regions of interest (ROIs) for VBM analysis.

These ROIs were created with the ‘‘aal.02’’ atlas included in the

Wake Forest University Pickatlas software version 1.04 (http://

www.fmri.wfubmc.edu/download.htm). Statistical threshold was

set at P,0.05 with Family-Wise error (FWE) correction for

multiple comparisons within ROIs. As showed in Figure S15, we

detected abnormal volumetric losses of the midbrain (PFWE = 0.03;

T-value; 3.45; x: 19; y:218; z:219) and pons (PFWE = 0.01; T-

value; 4.02; x: 10; y:224; z:246) in AD patients when compared

to age-/sex-matched healthy controls.

(DOCX)

Table S1 List of AD patients from the ADNI database
that were included in the study.

(DOC)

Table S2 List of healthy controls from the ADNI
database that were included in the study.

(DOC)
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